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ABSTRACT

Experimental and computational analyses provided an improved understanding of quasi-

static fracture in model composite systems. Constant displacement compression tests

using borosilicate glass double cleavage drilled compression test templates provided

qualitative assessments of localized toughening for crack growth near cylindrical

inclusions. Fiber diameter and fiber-matrix cohesion were found to be major contributors

in arresting crack growth. Estimates of critical fiber spacing and optimal interfacial

Frictional Grab were determined by varying these two parameters. Large crack-tip stress

fields induced interfacial slip and separation prior to arrival of the main crack. Further,

debonding and the proliferation of secondary matrix cracks characterized the role of

bridging fibers along weak interfaces. Strong residual normal compressive interfacial

stresses diminished the influence of crack-tip stresses; however, slip was still observed.

VHS tape and computer enhanced photos record a history of crack propagation and

interfacial slip. Experimental data was used to validate a fully three-dimensional

computational code capable of analyzing fracture near and around cylindrical inclusions.

Consistent variations in the shape of the crack periphery (in comparing the experimental

and computational results) renders confidence in the elasticity solution.

xiv



CHAPTER 1

INTRODUCTION

The purpose of this investigation is to characterize fracture near a brittle fiber -

brittle matrix interface. The development of valid design and failure criteria for ceramic

composites is contingent upon a full understanding of the physical mechanisms occurring

at the interface during fracture. Specifically of interest to this study is the development

and influence of frictional slip zones which form at the interface. The frictional sliding

within these zones plays a significant role in the local dissipation of energy which results

in an overall global toughening of the composite. Experimental data is used to validate

a surface integral code capable of analyzing three-dimensional fracture. Crack growth

around a single fiber, characterizing a small crack in a real composite, is modelled

incorporating an interfacial Coulomb friction law. The purpose of the study is not to

quantify the material properties of the composite; rather to gain a better understanding of

interfacial influences on fracture in brittle composites.
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1.1 Background and Motivation

The ability to improve today's flight vehicles weighs heavily on the advancement

of composite materials. Many military aircraft and weapon systems incorporate large

percentages of composite materials in their design. The Advanced Tactical Fighter

(ATF), F-117 Stealth Fighter, and B-2 Bomber use composite materials exter.sively

throughout their primary structure. The F-15, F-14, F-16, F/A-18 and AV-8B also use

composites in their design. Still others like the F-111 and A-10 are continually being

modified using composite materials in many of their secondary structures. With the

introduction of the National Aerospace Plane (NASP), researchers have noted, however,

that the mechanical properties of today's composite materials still fall short of what is

required. The NASP project calls for high strength, high modulus materials capable of

maintaining their mechanical properties at temperatures in excess of 1500 degrees

Fahrenheit. In order to satisfy many of these requirements, research is being diverted

from standard polymer composites to ceramic matrix composites (CMCs).

Ceramic materials are excellent thermal and electrical insulators, able to withstand

most environmental and chemical attacks. They possess high strength and high modulus

even at elevated temperatures. The major drawback of ceramic materials is their inability

to resist fracture. They are brittle. Theoretically, ceramic materials with ionic and

covalent bonds are stronger than most metals, but due to the ceramic's low toughness this

strength is never realized. Ironically, the complex bonding which gives ceramic materials
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exceptional strength, stiffness, and environmental resistance also prevents favorable

localized plastic deformation [3]. As a result, failure is often catastrophic. Voids and

inclusions in the material's atomic structure act as nucleation sites where crack growth

initiates. Concentrated stresses at the crack tip are usually above the material's critical

threshold value allowing the crack to propagate quickly through the material.

In the early 1920's, Griffith [12] investigated the fracture behavior of brittle

materials extensively. He is best known for the development of an energy equilibrium

criterion which states that crack propagation will occur if the energy released upon crack

growth is sufficient to provide all the energy required for crack growth [4]. In other

words, the total energy released upon an incremental crack growth, da, must be equal to

the sum of the negative of the work done by the tractions at the boundaries; the change

in internal energy, and the energy required for the formation of the two new surfaces

created by the crack growth. The total energy is defined by

E =-W +U +f2yda(1)

where

E =total energy

W =work done by tractions

U =elastic strain energy

y =surface energy

da =incremental crack growth
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For equilibrium to be satisfied,

dE _0 (1.2)da

or from Equation (1.1)

dW -dU = 2y = G (1.3)

where G is known as an energy release rate characterizing the energy released per unit

crack extension. Based upon stress field calculations for a centrally-located elliptical

flaw, Griffith estimated that

G - 2co2a (1.4)

E

Substituting Equation (1.4) into Equation (1.3), the well known Griffith energy equation

is derived (Equation 1.5).

°yyt L y (1.5)

The above equation states that a critical stress value exists beyond which crack growth

will occur.
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If manufacturers introduced mechanisms into the system to absorb the applied

external and the existing internal energy, less energy would be available for the creation

of new surface area (crack growth). The objective then is to either decrease the number

of imperfections in the material microstructure, or to "create" energy dissipating

mechanisms capable of arresting crack growth. The latter is the focus of this study.

1.2 Fracture of Composite Materials

In the early 1920's, Griffith laid the basic foundation upon which the field of

Fracture Mechanics is founded. Since that time, tremendous amounts of analytical and

empirical data have aided in the development of a practical set of fracture criteria for

homogenous materials. Recent requirements for lighter and stronger materials have turned

industry's focus toward composite materials. Specifically, focus has turned toward

ceramic matrix composites (CMCs) and metal matrix composites for high temperature,

high stress applications. Unfortunately, much is still unknown about failure in such

materials.

Unlike polymer composites, the fibers used in ceramic matrix composites serve

to slow crack growth rather than carry load. Ideally, designers would like to add fibers

with high fracture toughness, but unfortunately, the design (temperature) considerations

which dictated the use of ceramic materials also preclude the use of ductile fibers.

Ceramic composites are, therefore, composed of brittle fibers in a brittle matrix.
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Realizing that brittle fibers have low fracture toughness and are likely to fail in the

presence of high crack tip stresses, the original problem: an inherent inability to resist

fracture, still exists. If properly designed, however, energy which would otherwise be

available for crack growth may be dissipated at the fiber/matrix interface.

As a crack advanccs toward a fiber, a number of physical mechanisms occur at

the interface due to the presence of high crack-tip stress fields. If a chemical bond exists

between the fiber and matrix, fiber debonding may occur; dissipating internal energy.

Once debonded, frictional sliding across the interface initiates; again contributing

positively toward toughening of the composite. As crack growth continues past the fiber,

the fiber may break, pullout, or continue to bridge the matrix. The strength of the

interface determines which of these events takes place. If the interface is too strong, the

crack propagates though the fiber. If the interface is too weak, the entire fiber debonds.

In both cases, no appreciable improvement in the mechanical properties of the composite

is noticed. Bridging, however, promotes toughness through load transfer and continued

frictional energy losses*.

"Energy which would otherwise be available for crack growth is consumed through the creation of stress
fields along interlocking interfaces as shown in the figure below.
Energy is also dissipated though
the creation of heat (resulting
from frictional sliding) and OW
smoothing of the joining
surfaces.
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Due to potentially large frictional forces, fiber pullout may be a large contributor to the

material's toughness. Fiber failure, on the other hand, releases only a small amount of

energy equal to the stored elastic energy in the fiber [10]. After pullout or failure, the

fiber no longer contributes to the mechanical properties of the ceramic. Figure 1.1

illustrates several events which may occur as the crack propagates through the matrix.

Only by understanding how each of these events contributes to the toughening of the

whole composite can suitable fracture criteria be developed.

F~w DabmdiSg nes=

~~~S Iaa Rllza

Figure 1.1 Fracture of fiber reinforced composites
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Currently, two practical strengthening procedures exist for ceramic matrix

composites [10]. These techniques areflaw control and toughening mechanisms. Flaw

control accepts the brittleness of the material and attempts to reduce the number of

material imperfections (nucleation sites) created during processing. High research and

manufacturing costs coupled with the mere complexity of the task have diverted efforts

toward toughening mechanisms. Toughening attempts to reduce the brittleness of the

material by introducing energy absorbing mechanisms which prevent catastrophic failure.

Bowen [3] outlines three of the most commonly used toughening mechanisms:

(1) introduction of small cracks (microcracks) into the material's microstructure,

(2) transformation toughening, and (3) fiber~whisker reinforcement.

Introducing small microcracks may appear contrary to our goal: increasing

strength through the introduction of cracks? Recall, however, that crack propagation

initiates due to the existence of large stress fields at the crack tip. If the large primary

crack grows into one of these "microcracks," an apparent blunting of the crack tip may

occur reducing the stresses at the crack tip and possibly arresting growth.

Transformation toughening involves the dispersion of small pellets of zirconia into

the material. High stresses associated with the crack cause the zirconia to transform from

a tetragonal to a monoclinic structure. During this transformation, the zirconia undergoes

a volumetric increase; inducing localized compressive stresses which tend to close the

crack tip.
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Fiber reinforcement is the most common and perhaps most promising toughening

mechanism. Energy is removed from the system through the aforementioned mechanisms

of frictional dissipation, bridging, and pull-out occurring at the interface. The end result

of all three techniques is an apparent global toughening of the composite.

1.3 Linear Theory for Brittle, Plane Strain Materials

Linear Elastic Fracture Mechanics (LEFM) theory is appealing since it allows

stress fields near the c'ack tip to be defined by a single parameter, K. K is known as a

stress intensity factor, and relates the applied load, crack length, and geometry through

equations of the form

K
K = F(O) + HOT's (1.3.1)

where

a = stress near crack tip

K = stress intensity factor

r = distance from the crack tip

F(O) = function of the angle theta

HOT's = higher order terms (neglected)
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For a centrally-located circular crack in an infinite body or a small crack in a finite body,

the crack tip stresses are defined by

1 4 a O-cos[1-.sin-3e-
' r2 2 2

c _0[1 +sin.0.3e0 (1.3.2)
C '1 2o r 2 2 2

T = a Rsin.COOS 3e

The local coordinate system is defined as shown in Figure 1.2.

P

P

Figure 1.2 Arbitrary body
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Equation (1.3.2) consists of the first term in the expansion of Equation (1.3.1) and

adequately describes the stresses near the crack tip where the singularity dominates any

higher order terms. These stresses are plotted for r equal a in Figure 1.3. As r -+ 0

(approach crack tip), stresses become singular. Of course, in reality, stresses are not

singular. Stresses near the crack-tip exceed the yield condition which results in a

localized zone where plastic deformation occurs.

The presupposed linear assumptions require

" -r 0. (1.3.3)

a

where

rp= radius of the plastic zone

a = half crack length

This requirement is easily satisfied in brittle materials; allowing stresses to be

characterized by only the stress intensity factor.
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Figure 1.3 Stress distribution near crack tip

Analytical and empirical solutions exist for determining K for a myriad of

geometries and loading conditions [29]. The general form of these solutions can be

written as

K a V a--(1.3.4)

where 03 is a dimensionless constant relating geometries of the crack and body. Given

the applied stress, a, and half crack length, a, the stress intensity factor is easily
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determined. Linear elastic theory states that crack growth will occur if K is greater than

the material's fracture toughness, K1I, a material property. For brittle, plane strain

materials, Kjr is assumed constant, but will in general may vary with crack length and

material thickness.

Relative motion of crack surfaces can be broken down into components in three

orthogonal directions local to the crack front. Subsequently, K is divided into three

modes which may be superimposed to describe a general three-dimensional loading.

Stresses normal to the crack plane produce Mode I "opening"; in-plane shear results in

Mode II "sliding," and out-of-plane shear yields Mode HI "tearing." Deformation

resulting from application of more than one mode is referred to as "mixed." Figure 1.4

illustrates the direction of deformation for each of the modes.

MI Me&2 Mode3

O€n O& -O T"WfMO&

Figure 1.4 Crack displacement modes
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Poisson effects produced by the large normal crack-tip stresses cause material

immediately in front of the crack periphery to tend to contract (Figure 1.5). However,

depending upon the thickness, surrounding material may prevent this contraction. This

results in a tri-axial state of stress near the crack tip [1]. This results in a condition of

plane strain in the interior of the plate. At the boundary, transverse stresses are zero;

creating a region of plane stress. Therefore, the stress state transitions from a state of

plane stress at the edges to a state of plane strain in the interior of the material. As

mentioned above, KI, is dependent on material thickness. As the thickness is decreased,

K,, eventually increases due to a reduction in the number of material imperfections and

less restricted motion of slip planes in the plastic region. This apparent increase in

toughness may result in a slight concave bowing of the crack front.

Susm N.Md

Figure 1.5 Contraction
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1.3.1 Fracture in Glass

Pfaender [251 defines a glass to be "all materials which are structurally similar to

a liquid but which have a viscosity so great at normal ambient temperatures that they can

be considered as solids. In a more limited sense, the term 'glass' denotes all inorganic

compounds which possess these basic qualities." Glass is formed through rapid cooling

of inorganic oxides creating an "energetically unstable" non-crystalline structure. As

such, stress recovery is likely to occur over a prolonged period of time. Uhlmann [31]

distinguishes glasses from supercooled liquids by noting that glasses are indeed rigid

solids at standard temperatures and that any viscous flow historically reported (e.g.

window panes) is likely to be caused by this delayed recovery process.

Although fracture mechanics theory in glass is fairly well established dating back

to Griffith's analysis, non-intuitive peculiarities do exist [31]. For instance, plasticity has

been reported in glasses. Such deformation is assumed not to influence crack propagation

but is worth noting since it may explain reported increases in modulus of glass specimens

during testing. This phenomenon is due to inefficient molecular packaging which is

forced into more favorable atomic position. Another unexpected finding is that the relative

humidity (partial pressures) of the environment plays a significant role in the fracture

velocity. Stress corrosion leads to a blunting and strengthening of the crack tip. The

reaction may dominate such that velocity becomes independent of the stress intensity.

Also, interestingly, that static friction coefficient of glass on glass approaches unity when

chemically cleaned [28]. It is the presence of oils, the coefficient may drop to 0.005.
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1.4 Crack Growth Near Interfaces

The term "interfacial strength" used throughout this analysis refers to the

cohesiveness or "stickiness" of the interface from a Coulomb friction point of view. It

is assumed the fiber and matrix are not chemically bonded, and therefore, no true

interfacial strength (fracture toughness) is present. The only parameters required to

describe the interface reduce to the residual normal stress, ;R , which may result during

processing, and p, the friction coefficient, such that

S= R * (1.4.1)

Equation (1.4.1) is the standard statement of Coulomb friction. As such, the interface

may, therefore, only stick, slip, or open. Larson [19] noted that the extent of slip along

an interface decreases dramatically if interfacial toughness is considered. Slip is reduced

by about half for a fracture toughness as low as fifteen percent of the driving stress

intensity.

The generalized stress fields as depicted in Figure 1.3 precede the crack periphery

resulting in interfacial slip and separation. Reduced stress intensities at the crack tip due

to the presence of the fiber may result in a convex bowing of the crack periphery.
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Conversely, increasing stress intensities produce a concave bowing of the crack front

(Figure 1.6). Slip along an interface is the by-product of relative movement between

regions undergoing deformation. If the magnitude of the strain gradient is greater than

the frictional resistance at the interface, relative movement (slip) results.

Y -

Figure 1.6 Interfacial slip and separation

For the purposes of this analysis, crack growth is assumed to remain perpendicular

to an infinitely long planar interface in the two-dimensional case and perpendicular to a

cylindrical fiber in the three-dimensional case. The two materials forming the interface

are assumed to be the same, and the crack is not allowed to penetrate the interface. Such

simplifying assumptions eliminate complex stress intensity formulations (often singular)

associated with bi-material interfaces [5].
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Interest is focused specifically on the developing slip zone and interfacial

separation occurring at the interface. A "Frictional Grab" parameter [19], FG, will be

used to characterize the strength of the interface.

0 R

FG = p OR (1.4.2)
Go

where

=, = nominal -compression across interface

a. = driving stress

p = friction coefficient

Computational tools are available which can predicted stresses at a planar interface

resulting from an approaching crack [5,13,26]. There are a number of codes which

describe the behavior of a crack totally engulfing a fiber in which the fiber is usually

modelled as a closing traction behind the crack periphery [7]. Larson, however, has

developed a fully three-dimensional code capable of predicting stresses and displacements

for a crack approaching and growing around a fiber, and as such will be used in this

study. Development of the code is discussed in Chapter 3.
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1.4.1 Slip Zone Development

Figure 1.7 plots a typical shear stress distribution along an interface due to an

approaching crack. Two local maxima predict that slip initiates off the plane of the crack,

and even the possibility of a second smaller zone developing. Note that the direction of

the shear stresses in the smaller zone are opposite to those in the larger zone. This

phenomenon results in opposing inteifacial deformations in the two zones (ie. the relative

displacements between the fiber and matrix in the larger zone are opposite to those in the

smaller zone).

so=d~~ma I ElI
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Figure 1.7 Interfacial stress distribution
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Figure 1.8 outlines the location, size, and direction of slip for a crack approaching a

planar interface. The smaller zone (c-d) will be referred to as the zone of reverse slip.

Note that this zone is engulfed by the larger zone (a-b) as d/a -- 0. Reverse sliding is

difficult to conceptualize, but the possibility has not been disproved experimentally.

Stress distributions and corresponding displacements illustrating the tendency for the

interface to slide prior to crack arrival are included in Appendix A. Figure 1.9 shows the

influence of the Frictional Grab parameter on slip initiation. The distance from the crack

tip to the interface at which slip initiates and the height above the crack plane at the same

point are plotted for several values of Frictional Grab.
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Figure 1.8 Slip zone development
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Other investigators have noted the tendency for debonding to occur prior to the

main crack reaching the interface. Pan [24] investigated transverse fracture (crack plane

parallel to fiber) of three-point bend epoxy specimens with hexagonally-packed, one-

millimeter diameter, glass rods used as fibers. Experiments revealed that debonding

initiated prior to the main crack reaching the interface. Further, coalescence of secondary

cracks, which continually formed ahead of the primary crack promoted further debonding.

Fuller [81 also noted similar tendencies in specimens formed by hot pressing SiC (SCS-6)

fibers between borosilicate glass plates. Neither study, however, produced distinct

observation of the interface during fracture.

10-
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d/h, y/a x y/a
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Figure 1.9 Slip Initiation
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Knowledge of initiation and development of a slip zone along different cohesive

interfaces is important toward quantifying energy dissipation characteristics as an

explanation for the variation in the shape and speed of the crack front during growth near

and around a fiber. As the crack approaches the interface, local stress intensity values

on the crack periphery can increase or decrease depending on the strength of the interface.

The weakest interface corresponds to no fiber at all, just a cylindrical hole which acts to

increase the matrix crack stress intensity and, hence, increase the propensity for crack

growth. At the other end of the spectrum, the strongest interface would occur for a

matrix perfectly bonded (i.e. no slip) to a rigid inclusion. Somewhere near this upper

bound is a perfect interfacial bond between a fiber and matrix possessing like material

properties. This composite would behave as a homogeneous system with the crack

propagating as it would through a monolithic medium.

1.5 Numerical Development

The key episode in the fracture of brittle composite materials occurs between the

approaching crack periphery and each individual fiber. Recent development of

computational tools for analyzing this phenomenon have been restricted to two-

dimensional and axisymmetric models whose applicability to the three-dimensional

physics of the problem at hand is difficult to assess. The critical parameter is believed

to be the amount of energy dissipated through frictional sliding along the interface.

Characterization of the resulting stress fields is crucial in defining the equilibrium state
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of the body. Larson and Keat [151 have established the effectiveness of the surface

integral method for modelling 3-D fractures in infinite regions. The solution is obtained

through superposition of known influence functions via boundary collocation. Reference

Appendix F for a more comprehensive description of the computational development.

The extension to 3-D analyses provides a more representative model of the interfacial

energy mechanisms discussed in section 1.2. Prior to this development, bridging fibers

were modelled as closing tractions behind the crack periphery [7]. The codes were unable

to consider cases where the crack was not engulfing the fiber-, nor could they handle fiber

debonding or frictional sliding. Larson's development of interfacial stress fields permits

both.
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CHAPTER 2

EXPERIMENTAL PROCEDURE

This experimental study investigates a brittle fiber - brittle matrix interface in the

presence of crack-tip stress fields. Information is gathered on how the shape and speed

of the crack front change as the fracture approaches and grows around an inclusion.

Growth history is preserved on VHS tape and digitized computer images. Estimates of

crack-tip stress intensities, as well as, load versus crack length analyse-; help quantify

toughening as a function of Frictional Grab. The experimental data is compared to

computational results in Chapter 4. Fiber debonding is observed during fracture for

several interface strengths.

Figure 2.1 is a photograph of one of the fractured glass specimens which was

tested. The unfractured template is compressively loaded at the top and bottom surfaces

as illustrated by the dark arrows in Figure 2.1. The stress concentrations near the hole

cause the glass to fracture, and the crack propagates slowly toward the cylindrical fiber

indicated by the astrict (*). The fiber is placed through the center of the template width,

one inch above the larger hole such that the fiber is orthogonal to the crack plane. (The
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fiber diameter is approximately ten percent of the template width). This particular

geometry allows for examination of quasi-static fracture around the cylindrical inclusion.

The fiber diameter is kept small relative to the crack length and width in order to

investigate localized toughening induced by interfacial energy dissipation mechanisms.

Figure 2.1 Fractured specimen
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2.1 Test Specimen

Double Cleavage Drilled Compression test specimens [8] were produced using

pyrex templates incorporating several different fibers. Table 2-1 outlines the material

properties of each of the constituents. First cut dimensions for the DCDC specimens were

calculated to insure fracture prior to geometric buckling failure. This analysis is included

in Appendix C. Figure 2.2 shows the typical DCDC dimensions used; however, the

dimensions of the specimen and fiber were varied to qualitatively assess how the different

parameters influenced the fracture. Increasing the template thickness also prevented

cracks from initiating at the fiber hole, but did not alter the load at which crack growth

began.

Table 2-1 Material properties*

E 10 a K

(GPA) (/°C) (Mpa*mlfl)

Material

Pyrex 51.0 0.22 32.0e-7 0.83

Epoxy 3.5 0.34 1.50

Material properties were found in reference [1]
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As the template is loaded, stress intensities at the large centrally-located hole cause

the glass to fracture. Recalling that cracks propagate perpendicular to the maximum

tensile stress; bending moments result in the crack propagating orthogonal to the

(compressive) loading direction. Stable growth of the crack is achieved after a short

period of unstable growth, commonly referred to as pop-in. A stability analysis is

included in Appendix B. The crack continues to propagate through the mid-plane of the

material, perpendicular to the fiber axis, as outlined in Figure 2.2. Eventually, the system

fails catastrophically due to excessive crack length, or growth is arrested due to the

presence of the fiber, or the maximum loading capacity is reached. Occasionally growth

is retarded as energy available for the creation of new surface area (cracking) is absorbed

by other failure mechanisms which begin to dominate the system. The maximum load

was limited by the loadcell to 2000 pounds.

..A .1, a
h
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Figure 2.2 Double Cleavage Drilled Compression test specimen
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DCDC specimens offer several advantages. They are characterized by a relatively

long period of stable crack growth which can easily be controlled. Growth rate remains

reasonably constant during constant displacement rate tests. Further, stress relaxation is

virtually nonexistent. The test may be held with little or no crack extension'. Certainly,

brittle materials exhibit rate-dependent behavior, but for low strain rates, the material is

well behaved. (Creep behavior [11] in more viscoelastic materials, such as epoxy, proved

detrimental.) If the load is removed, the crack appears to retract. In actuality, the

material is of course still cracked, but as the crack opening displacement (COD) is

allowed to close, the fracture becomes transparent except at high levels of magnification.

This allows for re-examination of the crack "tip" as the load is reapplied. The behavior

of the crack propagation when compared to that of the original growth may prove useful

in determining failure criteria for fatigued systems.

Other advantages of DCDC specimens are: (1) the crack velocity may be

controlled easily over a wide range of speeds which may allow for examination of

dynamic affects on crack arrest, (2) crack growth remains on the longitudinal plane of the

material, and (3) ease of manufacturing.

"Note reference on stress corrosion cracking on page 1-15.
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Unfortunately, DCDC specimens must be produced from materials with very low

fracture toughness. A considerable amount of time was spent testing epoxy specimens;

however, the epoxy proved to be too ductile resulting in plastic deformation and buckling

prior to crack initiation at the hole. Variation in strain-rate, temperature, cure ratio, and

specimen size proved to be of no help. Pan [24] reported similar findings of considerable

plastic deformation during three-point bend tests of epoxy specimens.

2.1.1 Specimen Preparation

Glass templates were purchased from Behm Quartz, Dayton, Ohio. For uniform

loading, it proved critical that the edges of the specimen be parallel and the corners be

square. "High spots" were found to be the greatest obstacle during testing, often resulting

in catastrophic failure in shear. Behm was able to alleviate the problem through precise

milling of the edges.

Two holes were introduced into the glass plate using the Sheffield ultra-sonic drill

pictured in Figure 2.3. The crack initiates at the larger 0.1875 inch diameter hole located

at the center of the specimen. The second smaller hole, drilled through the width of the

template, held the fiber as described in Appendix D. The hole diameter was

approximately 0.05 inches. The templates were similar to those used by Fuller [8] which

he termed Double Cleavage Drilled Compression (DCDC) test specimens.
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Figure 2.3 Ultrasonic drill

Prior to drilling, the templates were hot waxed between a 0.25 inch base plate and

0.0625 inch guide plate (Figure 2.4). The ultrasonic drill operates by vibrating a steel bit

at or near a resonant frequency of the glass. Upon reaching the key frequency, the drill

pulverizes its way through the material. A liquid abrasive is continually sprayed on the
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bit to aid in drilling. Approximately 20% of the templates fractured as the bit exited the

glass. Sandwiching the templates between the base plate and guide plate reduced the

damage and produced less variation in hole diameter through the thickness of the

specimen.

Figure 2.4 Two specimens sandwiched between two glass
plates in preparation for drilling

Towards the later stages of this research, diamond-tipped drill bits were used to

bore holes into the templates. This method resulted in a cleaner hold with much less

effort, but was more expensive. The hole, however, proved to be "too smooth" requiring

that a starter-notch be filed to prevent excessive pop-in lengths.
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After drilling, the specimens were cleaned with acetone, and prepared for

polishing. The templates were manufactured from a large piece of plate glass and had

a single rough edge from being cut. The jagged edge reflected light back into the video

camera degrading the quality of the image. To reduce this problem, the edge was ground

using silicon carbide paper and polished using a special rouge purchased from the Ohio

State University College of Optometry.

2.2 Test Setup

Constant displacement tests at a rate of 0.002 inches per minute were conducted

on a United model SFM test system. A video camera was used to record crack

propagation and interfacial slip. The crack length was measured visually, and the load

was audibly recorded on the VHS tape using a microphone. Figures 2.5 through 2.7

illustrate the test setup used.

2.2.1 Digitization of Crack Front

Twenty-four bit digital imaging techniques were used to capture frames off the

half-inch VHS tape. Computerized filtering of the images enhanced visualization of the

crack periphery. Three consecutive frames from the VHS tape were averaged to reduce

any blurring which may have existed on any single frame. Each image consists of

approximately 720 bytes of data. These images are included in Appendix E.
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Scrack measurementi tool

Figure 2.5 Test setup

2.3 Test Plan

The Frictional Grab parameter describing the cohesiveness of the interface was

varied by incorporating both glass and epoxy fibers with and without coatings to weaken

the interface. Epoxy fibers were formed by curing the fiber in the existing hole. Glass

rods were introduced into the smaller hole using standard shrink fitting techniques. The
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glass rods were drawn down to just larger than the diameter of the fiber hole; the matrix

was than heated; the fiber was placed into the hole, and the matrix was allowed to cool

around the specimen. This procedure created strong residual compressive stresses. The

cohesiveness of these interfaces was varied using different release agents. Silicone spray

was used with the epoxy fibers and motor oil with the glass fibers. Interfacial strength

was estimated using the procedures which are outlined in Appendix D. Table 2-2 (page

2-13) lists a few of the typical tests which were conducted. A large number of tests were

conducted with epoxy DCDC specimens. All of the templates failed due to buckling.

These tests and a number trials using glass as the matrix material were all part of a large

learning curve.

caer

Figure 2.6 Test setup
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Figure 2.7 Test setup
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Table 2-2 Successful compression tests using DCDC specimens

Parameter Fiber" View" Media*"

Test

01 nf a v, d

02 h a, ac, t v, d

03 e a, ac, t v, d

04 es a, ac, t v

05 p a, ac, t v,d

06 po a, ac, t v

"Fiber (nf) no fiber, (h) hole; (e) epoxy; (p) pyrex; (es) epoxy with silicone coating; (po) pyrex fiber
with oil coating

"*View: (a) fiber axis; (ac) close-up along fiber axis; (t) tansverse fiber axis Note: only one camera
was available; therefore, each view required a separate test.

"*"Media: (v) VHS tape; (d) digitized computer images
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CHAPTER 3

COMPUTATIONAL PROCEDURE

Solutions to fracture mechanics problems may be obtained using surface integral

techniques, often with less difficulty than if conventional methods are employed. Surface

integral formulations are a direct extension from common indirect boundary element

techniques which yield elasticity solutions to fracture mechanics problems through

integration of fundamental singular solutions across the crack boundary*. Crack-tip

displacements are estimated by singular kernels of an integral equation from which the

elastic solution in obtained [231. Two codes capable of investigating two and three

dimensional crack growth near an interface are reviewed. Appendix F outlines indirect

boundary element procedures as applied to linear elastic fracture mechanics.

"In contrast to direct boundary element formulations which are based on the reciprocal work theorem which
states that "if two distinct elastic equilibrium states exist in a region, V, bounded by the surface, S. than the
work done by the forces of the first system on the displacements of the second is equal to the work done
by the forces of the second system on the displacements of the firSt." [9]
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3.1 Surface Integral Techniques

Although finite element methods are standard for solving many elasticity problems,

the problem at hand is solved with considerably less work and computational time using

surface integral techniques [9]. These methods are appealing since only surfaces, not

volumes, need to be discretized. Consider, as an example, a crack in an arbitrary body.

The "crack", in reality, is simply the open space between two free surfaces. The surface

integral method requires that only this surface be discretized with two-dimensional

elements. Finite element codes, on the other hand, require that the entire volume be

discretized as an assemblage of three-dimensional elements. For each increment of crack

growth, the entire volume would need to be remeshed. Such an approach is impractical.

Surface integral formulations only require that the crack surface be remeshed as the crack

propagates. Surface integral techniques; however, produce fully-populated (not banded)

matrices which increase the computational time required for the given degrees of freedom.

3.2 Crack Growth Applications

The following discussion outlines the general methodology incorporated in the two

crack growth codes used in this study. The two-dimensional case will be examined, but

note that the same approach is used in the three-dimensional case.
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3.2.1 Assumptions and Limitations

Computational analysis of crack propagation near and around frictional interfaces

is accomplished. The primary interest being the development of frictional slip zones at

the interface, and how this sliding affects crack growth. As previously discussed, a

myriad of variables influence fracture near interfaces. It is impractical, if not impossible,

to study how all these parameters influence growth individually; not to mention any

coupling wi-ich occurs. This study assumes that the primary variable describing crack

growth around an interface is based on friction considerations, and can be characterized

by a single parameter known as the Frictional Grab (FG).

The system modelled in this analysis consists of an internally pressurized" crack

approaching a single fiber or planar interface. Both the fiber and matrix are assumed to

be made of the same material." This is consistent with aforementioned assumptions, and

allows specific examination of frictional mechanisms. In this case, the material is glass.

Table 2-1 lists material properties for the constituents used in this study.

"* For LEFM theory, stress intensities are equivalent in the case of an internally pressurized crack as for an
applied far-field stress at boundaries.

"- The constituents of CMCs are often composed of materials having similar material properties. It is
therefore assumed that since interest in frictional considerations is the primary focus, allowing the fiber and
matrix to be of the same material does not produce any ill results [19].
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Three-dimensional computational examination of crack growth around bi-material

interfaces is an extremely difficult problem, and to my knowledge has not been

accomplished. Consideration of only a single fiber is adequate for modelling very small

matrix cracks indicative of those which initially form. Maximum toughening will occur

if these cracks can be arrested before they reach a critical length where unstable growth

may occur. Appendix B addresses stability issues.

In this symmetric geometry, the crack remains orthogonal to the interface;

eliminating the need for a complex crack growth law to determine the direction the crack

periphery would move. The interface is assumed void-free with no fracture toughness.

In reality, of course, interfaces are prone to imperfections and to some extent mechanical

interlocking, but since the length of the slip zone is small relative to major imperfections,

we assume the interface is smooth.

3.2.2 General Solution

The following is a summary of the methodology behind the development of the

two codes written by Larson [19].

Kelvin [21] derived the fundamental solution for the stresses induced by a point

force in an infinite medium. The solution has the form
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oU = c A--AR) (3.2.1)

7R3

where R is a vector originating at the location of the point force and extending to a point

of interest.

A force dipole is created in the limit as two opposing point forces converge as

shown in Figure 3.1. A new fundamental singular solution, f(8,x,y,z), describing the

stresses induced by the dipole at any point, a, is formed.

The strength of the singularity is characterized by the strength of the dipole. The

dipole represents a point of infinite strain, or equivalently, a finite displacement between

two infinitesimal surfaces (a hole).

Go ha [•f(zz)41tz,Y,z-)]

P (zy.z)
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Figure 3.1 Force dipole
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The crack and interface are discretized into elements comprising a continuous

distribution of dipoles. For the general three-dimensional case, plane strain considerations

are maintained through the addition of two other continuous distributions of dipoles acting

in the two remaining axial directions to remove any Poisson contractions which may

occur. Elements are defined by three or four geometric nodes* and include a single

structural node (collocation point") centered in the element where the nodal degrees of

freedom (dof) are calculated. Typical meshes for a crack impinging on a fiber are

illustrated in Figures 3.2 and 3.3.

" Higher order elements are used at the crack tip in order to capture complex stress gradients.

"Point at which boundary conditions are exactly satisfied. Since it is the applied stresses, not the crack
opening, 8, which is defined, the surface integral technique seeks to satisfy the prescribed boundary
condition at a single collocation point for each element by determining the required strength of the
singularity such that when superimposed the boundary condition is exactly satisfied at the collocation
point.
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The elastic solution is found by solving

(3.2.2)

where [C] is a matrix of influence coefficients satisfying Equation (3.2.1). The singularity

in the fundamental solution localizes the influence of 8 to a single point (collocation

point), and we can therefore assume that the elements along the crack plane have a

constant opening over their length. With this assumption, the fundamental solution

becomes a function of only the relative position between the collocation point of interest

and continuous distribution of dipoles on any given element. Opening along crack-tip

elements are defined by interpolation functions since they must be closed at one end and

have a finite opening value at the other. These elements require special handling since

8-4(r). The approach is discussed later in this section.

Figure 3.2 Three-dimensional boundary elements for the fracture approaching

a fiber
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Figure 3.3 Three-dimensional boundary elements for the fracture impinging on
a fiber

Once the crack and the interface have been discretized into elements consisting

of a single collocation point and a continuous distribution of dipoles, the elements of the

[C] matrix are determined by calculating the influence of every dipole on any given

collocation point. Therefore, to determine the influence on any one element due to the

dipoles on any other element, we simply integrate the derived fundamental solution over

the area of the element taking into account the vector between the two points. For a

typical one-dimensional isoparametric element referenced in a natural coordinate system,

•, the elasticity solution becomes
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= =8 f Ax1 z) d4 (3.2.3)
-1

The integration is performed numerically by Gauss Qaudrature [6]. Tractions are related

to stresses through Cauchy's law shown below.

t, = aUlln (3.2.4)

Two instances exist where the above equation is not valid: (1) crack-tip elements

where 8=8(r), and (2) when investigating the influence of the dipoles coincident with the

collocation point of interest. Fortunately, a mathematical manipulation, equivalent to

imposing a rigid body motion, results in a solution. Adding and subtracting

f x x) 82 (3.2.5)
--a

where 82 is the crack opening at the collocation point, results in an equation, although

still singular, is integrable by Cauchy's Principal Value Theorem." Figures 3.4 (a) and

(b) illustrate the singularity transformation.

"Cauchy's Principal Value (pr. v.) Theorem is based on the residue integration theory [18] which develops
techniques for integrating analytic functions around closed contours. The Principal Value Theorem handles
definite integrals whose integrand becomes infinite at a point p in the interval of integration. The theorem
states that

B P-4 B

pr.v. fAC& = [i f Ax*)+fr B-*

A 4-0 A p+4
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Figure 3.4 (a) Typical form of an elemental singular integral

0 0 i

INrAI W-.9)((~~) - 82

Figure 3.4 (b) Modified singular integration for Cauchy Principal Value
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The final form of the solution becomes

1 -1

T= f AXIYA [8(r) A 2 d f AXIYIz) 82 A~
-1 - -- (3.2.6)

f-fAVA)6 2 dt + f ,U;) 62 dt
1 -40

Solutions to the first term are found using Cauchy's Theorem. The second and third term

are evaluated directly, and the last term is ignored since it is associated with a rigid body

displacement and does not alter the stress within the system.

Once the influence coefficient matrix has been determined based upon the current

geometry of the model, the problem may be solved. Initially, all displacements on the

interface are assumed zero and the only prescribed boundary condition is the uniform

pressure associated with the crack. Partitioning of Equation (3.2.2) allows solution of

unknown displacement on the crack and unknown stresses upon the interface. Stresses

at the interface are determined using Equation (1.4.1). If the shear stress is less than the

normal stress times the friction coefficient, the stress at the interface is set equal to the

value of the shear stress and the interface does not displace. If the shear stress is greater

than the product of the normal stress and friction coefficient, then the shear is set equal

to the value of the normal stress times the friction coefficient and the interface slips. If

the normal tractions are greater than the initial compressive stress, the interface is allowed

to open and the shear stress is set equal to zero. Given these stresses, displacements are

solved by again applying Equation (3.2.2). Once the displacements are known, new
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stresses are calculated, and the procedure is repeated until equilibrium is reached. The

final solution is determined through n iterations applying tractions of p/n on the crack

plane at each increment. Note that as in other linearized elasticity solutions,

displacements are assumed to be small such that the original geometry is not altered.

Reference Appendix F for a more comprehensive discussion of the theory behind the

three-dimensional code incorporated in this study.
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CHAPTER 4

RESULTS

Observation of non-homogenous fracture provides evidence of localized

toughening resulting from cylindrical inclusions in a brittle matrix. Variations in crack

propagation rates define the impact of interfacial strength on matrix toughening. Further,

as stress intensity values vary across the crack periphery, the shape of the crack front is

altered since variations in K effect the propensity to grow. This phenomenon, as well as

the development of slip and debonding regions during fracture, is recorded for several

interfacial strengths. Experimental data are compared with computational results.

4.1 Preface

The primary focus of this study is an experimental examination of quasi-static

fracture in a brittle composite system. Currently, limited information exists regarding the

physics of a crack approaching and enveloping an inclusion. Fuller 18] published data

tracking stable crack growth around an inclusion using acoustic wave techniques to follow

the crack periphery. Although information on the position and speed of the crack front
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is presented, Fuller's data is limited and failed to visualize specific crack - fiber

interactions.

Since a solid foundation to compare either experimental or computational results

does not exist, this analysis is presented as a starting block from which speculation can

be resolved and further experiments designed. Certainly, all variables cannot be

accounted for in a single experiment. As an example, the disparity between the modulus

of elasticity of the constituents may play an important role during fracture. For cases

where the materials are tightly bonded or have large friction coefficients, the modulus is

certainly important. However, for weak interfaces (which is desired in ceramic matrix

composites), interfacial slip will influence the compliance near the fiber to a greater

extent than will differences between the elastic modulus of the fiber and the matrix,

especially in ceramic matrix composites which have constituents with similar mechanical

properties.

More information needs to be gathered in order to base crack growth laws on

physical mechanisms as is evidenced by the use of empirical rules for dynamic and

fatigue growth (e.g. Paris Law) [1,41. To make a one-to-one correlation between the

computational and experimental results is not feasible since no true physical law has been

identified which defines the propensity of the crack to advance. The quasi-static growth

being modelled here might seem to be a straightforward application of static fracture

methods through time, yet questions remain unresolved for the three-dimensional fracture
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analysis. Larson assumes that brittle fractures proceed in proportion to the local stress

intensity values. (In contrast to global energy considerations.) Computationally, stress

intensities at discrete nodal coordinates may be determined across the crack front.

Suppose, however, the analysis determines that K at one node is greater than K1c, but is

below this critical value at the two surrounding nodes. Would the crack advance? If so,

how far, and what do we do with the adjacent nodes? In reality, K is never greater than

K1I, but to a computer, they are both merely numbers. Further, how should the solution

be affected by changes in crack length and model geometry. This work will provide

guidance in determining an appropriate computational criterion. It is assumed that the

specific boundary condition which produces the driving stress is unimportant, and that

valid comparisons can be made between computational and experimental data since

growth occurs when K reaches K,, for both cases. Computationally, each node advances

perpendicularly to a tangent drawn parallel to the radius of curvature at the given

coordinate. The distance the node advances is proportional to the value of its stress

intensity normalized with the average stress intensity at a point along the crack front far

away from the influence of the inclusion or edge (Figure 4.1).
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Figure 4.1 Crack advancement

4.2 Experimental Results

4.2.1 Effective Toughening

The propensity for crack growth is proportional to the magnitude of the stress

intensity value at the crack tip. Once K reaches K,,, the crack propagates. During

fracture through the homogenous region of the specimen, variations in K across the crack

periphery can be neglected which results in a flat crack front.

"The front of the crack plane is flat and perpendicular to loading axis.
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The shape of the crack front shown in Figure El (Appendix E) shows that this assumption

is reasonable. Any curvature of the crack front (far from the inclusion) may be attributed

to the transition between a state of plane strain to plane stress as discussed in chapter one.

Fractures far away from fiber influence maintain their initial shape since K is constant

across the crack front. As the crack approaches the inclusion, variations in stress intensity

values alter the general shape of the crack periphery. Thus changes in the shape of the

fracture indicate the degree of matrix toughening.

During constant-displacement testing, the load increases continually until fracture

occurs. At this moment, K is equal to K1I. As the crack extends an incremental length,

da, some load is relieved, but since testing continues, the load increases until K once

again equals K1c and the crack extends further. The energy placed into the system is

consumed by two primary mechanisms. A portion of the energy drives the crack; the

remaining energy is stored as strain (elastic) energy in the body. Depending on any non-

uniformities in loading or geometry, the percentage of energy contributing to each of

these mechanisms will vary. Given two specimens with exactly the same geometry and

loading, the crack length will be the same for any given load. (Pop-in length will vary

accordingly.) However, if the center hole is drilled off-center, or if the loading is

somewhat eccentric than the crack length for the same load will differ between the two

specimens since less (more) energy is stored within the body. Comparing the load at

which the fractures initiated revealed that the disparity between equivalent specimens was

around seven percent. This is certainly acceptable; however, to account for this variation
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for purposes of comparing the toughening which resulted from the introduction of fibers

into the matrix, the load at which the crack initiates is initialized. A typical load versus

crack length curve for a DCDC specimen has a positive slope signifying the fact that

energy is being stored within the body, and also due to the fact that the crack is

propagating into a diminishing mode I stress field, and therefore, the load must continue

to increase for an equivalent stress intensity value to be maintained. Figure 4.2 illustrates

the local toughening phenomenon which takes place due to the introduction of the fiber.

The effective toughening can be determined by drawing a vertical line to the right of the

fiber and calculating the additional load required for an equivalent crack length. Note that

the crack propagates at a constant rate. This is to be expected since constant

displacement tests are being performed and K1c is constant. Computationally, discrete

stress intensity values along the crack periphery are calculated; therefore, if the variation

in the shape of the crack front compares well with experimental results than the localized

toughening phenomenon has been adequately simulated.
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Figure 4.2 Experimentally derived load versus crack length curves for several
DCDC specimens

4.2.1.1 Fiber: Hole

As the crack approaches the free surface of the hole, local stress intensities

increase and the periphery dynamically snaps into the hole. As the crack continues

around the hole, growth is retarded since the periphery must not only advance forward

but also propagate along the circumference of the hole diameter. Figures E2 through E5

and Figure E9 (Appendix E) show the sequence as the crack propagates around the hole.

An increase in toughening is calculated by determining the percent increase in load
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required for the fracture to reach a reference half-crack length of one inch. Using a hole

as the fiber, the additional load required was found to be 2.6 percent greater than in the

homogenous case.

4.2.1.2 Fiber: Epoxy

The addition of epoxy fibers into the glass matrix proved to be the most beneficial

requiring a 13 percent increase in load for the fracture to reach the reference length. This

dramatic increase supports the theory outlined earlier. The interface for this case is

relatively weak with large amounts of debonding and frictional slip occurring before and

after arrival of the main crack (Figures E12 through E14). The energy dissipated through

these mechanisms is instrumental for the toughening phenomenon. Note that these results

were determined using a fiber diameter equal to 16 percent of the specimen width. Fiber

widths on the order of 30 percent of the specimen width were able to completely arrest

the fracture (maximum load applied was 2000 pounds.)

4.2.1.3 Fiber: Epoxy and Silicone Spray

The addition of silicone spray along the interface reduced the percentage of

toughening from 13 to 3.75 percent. The large variation is attributed to (greatly) reduced

energy dissipation which results from frictional sliding along the interface. The silicone

eliminates the mechanical interlocking which would normally occur along the interface.
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4.2.1.4 Fiber: Glass

DCDC specimens with glass fibers proved to be the most inconsistent during

testing. The problems are attributed to the manufacturing procedure used to introduce the

fibers into the matrix. Both the fiber hole and the glass fibers are slightly tapered;

however, the taper ratio of the two are certainly different. The manufacturing procedure

involved quickly forcing a small, brittle rod into a matrix which was heaed to around

1000 TF. Since glass dissipates heat rapidly, the matrix had to be removed from the oven,

and the fiber inserted and forced down before the hole shrunk back to its original size.

On top of all this, there was no guarantee that the fiber and matrix fit snugly together

over the length of the fiber.

Of the five pyrex fiber-matrix templates, two recorded slight increases in

toughening; two recorded slight decreases in toughening, and one behaved as a

homogenous system. Based on experience gained during manufacturing and testing of

the specimens, it is believed that the increases in toughening resulted from fibers which

were not well bonded. On the other hand, for the strong interfaces in the remaining three

templates, the crack-tip stresses were transferred across the interface and the fracture was

not altered, or even worse the residual tensile stresses in the matrix* actually increased

the stress intensity along the crack periphery.

"* For compressive interfaces, residual tensile stresses are produced in the matrix in order to satisfy
equilibrium.

4-9



4.2.1.5 Fiber: Glass and Oil

The addition of motor oil to the interface did not appear to alter the results from

the above case (glass fiber - no oil). This is due primarily to the fact that most (if not

all) of the oil evaporated due to the intense heat of the matrix during manufacturing.

4.2.1.6 Variation in Crack-Periphery Shape

Figures 4.3 through 4.5 illustrate the general shape of the crack periphery as it

proceeds around the inclusion. These figures were obtained by tracing the shape off of

a monitor. The arrows denote the direction of crack propagation. Actual digitized images

of the periphery are included in Figures E9 through EII (Appendix E). As expected,

weaker interfaces produced more toughening than tight interfaces since energy required

for propagation was consumed through frictional slip. The behavior of the fracture near

the various inclusions confirms expectations of the workings of the various interfacial

mechanisms. Crack-tip stress fields are easily transferred across very cohesive interfaces

resulting in limited toughening; limited slip and separation, and limited variations in

periphery shape. On the other hand, relatively weak interfaces permit apparent crack-

interface interactions.

4-10



tU2. tok

Figure 4.3 Crack-front profiles for a crack propagating around a hole
Arrows indicate the direction of crack propagation

Fiber. Epoxy

Figure 4.4 Crack-front profiles for a crack propagating around an epoxy fiber
Arrows indicate the direction of crack propagation
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Figure 4.5 Crack-front profiles for a crack propagating around a pyrex fiber
Arrows indicate the direction of crack propagation

4.2.2 Development of Slip Zones

Specific fiber-matrix interactions (as discussed in section 1.2) were observed for

four separate interfacial strengths. Pyrex fibers produced strong compressive interfaces.

Epoxy fibers resulted in weak (possibly tensile) interfaces. A silicone release agent was

used to limit chemical bonding; again decreasing the strength of the interface. Large

crack-tip stress fields induced slip and separation (for weak interfaces) prior to arrival of

the main crack. Residual normal compressive stresses diminished the influence of crack-

tip stresses; however, slip was still observed. Debonding and the proliferation of

secondary matrix crack characterized bridging fibers along weaker interfaces. Figures
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E12 through E14 illustrate the damage occurring at the interface as the crack propagates

past the epoxy fiber. Figures E15 and E16 illustrate the limited interfacial slip and

debonding which occur along very cohesive pyrex interfaces. As theory predicts, slip

does not initiate until the main fracture reaches the interface.

4.2.3 Failure Strength

During testing, if the fiber was not able to arrest or at least considerably slow the

fracture, then growth continued to within a half inch of the edge of the specimen at which

time the fracture became unstable and the template failed catastrophically (at loads as low

as 1200 pounds). On the other hand, if growth was significantly slowed or arrested, the

system could be loaded to 2000 pounds (limited by loadcell) without failure. A single

test was conducted to determine the ultimate strength of a DCDC template with six epoxy

fibers placed symmetrically above and below the main centrally-located hole. The fibers

within each of the two groups of three were spaced approximately one fiber diameter

apart. The ultimate load was found to be twenty percent greater than in a homogenous

template: a notable increase. The critical crack length was found to be a quarter of an

inch shorter than in the other cases. This results from the dramatic increase in load

required to propagate the fracture around a series of inclusions. Interestingly for all tests

which failed due to excessive crack length, not only did the fracture catastrophically

extend to the end of the specimen, but also bent around and reentered at the center of the

two columns (each comprising half of the initial template).
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As discussed in Appendix C, growth was slowed significantly in two tests when

the crack was well beyond the fiber. This is attributed to eccentric loading or material

flaws which cause other failure mechanisms (buckling) to dominate. Retardation in crack

propagation for these rare cases was followed by either ligament buckling or shear failure

at one of the boundaries.

4.3 Computational Results

Larson's code was used to simulate fracture around cylindrical inclusions for five

different interfaces. A Frictional Grab of 0.001 was used to model growth around a hole.

The remaining cases as presented in Table D-1 in Appendix D were used to simulate

growth around the various fibers. Figures 4.6 through 4.8 graphically illustrate the salient

features of the crack periphery growing around the various interfaces. These figures

indicate the areas around the inclusion which have magnified or retarded stress intensities.

It is worth noting again that the solution, although similar in appearance to two

dimensional results, are indeed fully three dimensional and include frictional sliding

effects which are an essential component of the problem. The code is capable of

determining the development of frictional, slip zones, as well as the stresses within the

fiber. Figures 4.9 and 4.10 illustrate these capabilities. Similar results are well

documented in Larson's dissertation [19] for several values of Frictional Grab.
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1G - 0.001

Figure 4.6 Crack-front profifles for a crack propagating around a cylindrical
inclusion with a Frictional Grab interfacial cohesive strength of 0.001

1G - 0.4

Figure 4.7 Crack-front profiles for a crack propagating around a cylindrical
inclusion with a Frictional Grab inteffacial cohesive strength of 0.4
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Figure 4.8 Crack-front profiles for a crack propagating around a cylindrical
inclusion with a Frictional Grab interfacial cohesive strength of 3.0

Figure 4.9 Computational prediction of the development of frictional slip
zones
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Figure 4.10 Computational prediction of fiber stresses

In an attempt to determine an appropriate increment to advance the periphery, a

series of computational analyses were performed. An actual time history of crack

propagation around a fiber (Figure 4.11) was used as a guideline for estimating the

current position of the fracture. The most accurate results were obtained when the crack

was advanced a distance of one-fifth of the fiber diameter. Figure 4.12 shows the

computational results at similar locations to those in Figure 4.11. This information is

extremely useful since it allows for a completely numerical estimation of toughening as

a function of Frictional Grab. Further, by defining a constant value to march the crack

forward, the time required for the fracture to reach a critical length, as well as, the

variation in growth rate around the inclusion may be predicted. As an example, the

number of computational runs required to march the fracture around an interface with a
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Frictional Grab of 0.4 was fifteen percent greater than the number required for a

Frictional Grab of 0.001. The number of runs is proportional to the time required to

propagate the fracture around the interface, and ultimately defines toughening in our

model composite system. Figure 4.13 shows a plot of normalized stress intensity values

for a flat crack front emanating from the center of the fiber for FG values of 0.001 and

0.4. The stress intensity values are normalized with those of the same crack shape but

with a FG of 3.0. The figure reinforces the point that less (time) computer runs are

required for low FG values.

Figure 4.11 Experimental crack-front profiles for a crack propagating around a
hole
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Figure 4.12 Computational crack-front profiles for a crack propagating

around a hole
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Figure 4.13 Normalized stress intensity values for a flat crack front emanating
from the center of the fiber
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

This study has outlined principles from which one may better understand fracture

in brittle fiber - brittle matrix composites. One goal is to move away from developing

(ex post facto) crack growth laws based upon empirical data obtained from very specific

tests which may not be applicable to "real world" applications. Validation of Larson's

program is one step towards this end. The code may now be expanded with confidence

that the elasticity solution adequately describes the problem at hand.

5.1 Experimental Procedure

Observation of quasi-static fracture in a brittle fiber - brittle matrix composite

system was successfully accomplished. The development of slip zones, as well as

variations in the shape and speed of the crack periphery, could be readily monitored using

transparent Double Cleavage Drilled Compression test specimens. Procedures outlined

in chapter two provided accurate and repeatable tests, and the glass templates proved

surprisingly robust to manufacturing flaws. The most challenging aspect involved
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choosing representative fibers which could be easily introduced into the matrix. Typical

fibers used in CMCs usually have a (slightly) higher modulus of elasticity than that of the

matrix material. This analysis assumed that for relatively weak interfaces, the influence

due to the disparity between the moduli was overshadowed by affects produced from slip

and debonding. Further analysis of the validity of this assumption should be conducted.

A quantitative analysis of Frictional Grab versus Young's modulus would provide insight

as to the roles of these two parameters.

One of the major problems with conducting these types of tests is that often the

actual item may not be tested whether due to financial or equipment limitations; the mere

complexity of the problem; the availability of material, or any of a number of reasons.

Certainly computational models are limited by the very definition; however, even with

most experimental tests, representative coupons are used in place of an actual inventory

item. This study has taken the first step in analyzing quasi-static fracture in brittle

materials. The next step is to take the models used (both experimental and

computational) and make them more representative of ceramic matrix composites.

The fiber and matrix should be manufactured together such that chemical bonding

occurs producing some fracture toughness at the interface. Typical CMCs incorporate

fibers with diameters from 10 - 50 microns, and fiber volume fractions which may be

quite high. If the inherent processing difficulties in producing a glass DCDC template

with say a hexagonally-patterned arrangement of small brittle fibers can be eliminated,
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than we have taken the next step in the investigation. Fuller attempted to eliminate this

problem by placing fibers between two glass plates and then hot pressing them together.

However, a large number of imperfections (bubbles) formed at the interface.

As discussed in the first few pages of chapter one, ceramic composites are

amenable to high temperature applications. Therefore, a logical extension of this work

would be to include thermal - mechanical testing. Additionally, as was discovered during

testing, the percentage of moisture in the air may influence crack-growth rates, and may

be worth further investigation.

Computationally, stresses within the fiber are calculated. It would be interesting

to experimentally determine these results for comparison. Piezoelectric materials or

hollow cylindrical fibers with strain gages are two possibilities for measuring these

stresses. Also, if a camera with a higher magnification is used, interfacial debonding and

slip could be more readily observed providing a better understanding of the micro-

mechanics involved with the problem at hand.
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5.2 Computational Procedure

This analysis has presented experimental data necessary for the development of

an empirical crack growth law suitable for quasi-static fracture in brittle composite

systems. Simply marching the crack periphery forward by an amount proportional to the

stress intensity value at discrete nodal coordinates adequately represented variations in the

crack front for growth around cylindrical inclusions. However, as discussed in the last

chapter, there is no physical law validating this approach. In reality, K is never greater

than K1c, nor is the periphery a series of discrete nodes. Thus, a more representative,

physically sound, law needs to be developed which is capable of modelling a series of

fibers, as well as, a representative volume element.

As an aside, the statement "simply marching the crack periphery forward" is not

entirely correct. Computers are notorious for generating tremen lous amounts of data, and

the operator must than objectively apply his engineering judgement and determine the

value of the information. Larson's code provided stress intensity values at discrete nodes

along the crack front; however, for small growth increments, variations in these values

became ambiguous. It was difficult to determine the curvature which the periphery would

assume. Further, in defining the geometric nodes for the next time step, care had to be

taken to ensure that the proper number and orientation of nodes were chosen to satisfy

the cubic spline algorithm incorporated in the automatic mesh generator. Marching the

crack forward a distance of one-fifth of the fiber diameter, however, seemed to provide

sufficient accuracy.
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As with the experiments, the computational analysis should be expanded to be

more representative of an actual ceramic-matrix composite. In reality, fiber - matrix

interfaces have some fracture toughness. Further, interfaces are prone to imperfections

which translate into stress concentration sites. A statistical distribution of nucleations

sites could be included, and special crack-tip elements added to the interface to account

for these problems. The code should also be expanded to include multiple fibers, angled

crack approach, interfacial penetration, general crack geometries, and different constituent

properties. Note, however, that the latter additions would require a tremendous overhaul

of the code since they may involve singularity problems; mixed-mode stress intensities,

and complex crack growth laws. The code also does not account for residual matrix

stresses which exist to satisfy equilibrium along the interface.

A series of parametric studies should be accomplished to determine convergence

rates versus computational time. The crack should be marched forward in small

increments in order to capture variations in periphery shape, but not at unreasonably high

computer expense. Further, alternate studies estimating the minimum number of crack-tip

elements required to yield sufficient accuracy should be performed to minimize computer

memory requirements.

Design engineers desire handbooks listing optimal interface strengths for various

fiber - matrix combinations similar to the one found in Figure 5.1. If the interface is too

strong, premature fiber failure may occur. If the interface is too weak, critical energy
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dissipation will be lost. Therefore, a series of computational runs determining the best

Frictional Grab to obtain maximum energy dissipation need be executed. These tables

would allow an engineer the ability to determine interfacial coatings or processing

techniques in order to optimize the strength of the composite.

Design Guideline

2-
Toughening

K 1.9

1.8-

1.5

1.4
1.3

1.2
1.1

0.9 / a o e m S s m
0.8-
0.7........................

Figure 5.1 Sample chart for determining optimal interfacial strength
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APPENDIX A

COMPUTATIONAL ANALYSIS OF CRACK GROWTH

NEAR PLANAR INTERFACES

Parametric studies investigating critical input parameters determine (1) the

influence of different variables upon the stress distributions and associated displacements

along an interface, and (2) the validity of the Frictional Grab parameter, FG, as a single

characterization of interface cohesion defined by

0rFG= C"
Go

where

= Residual normal compressive stress

Fo = Driving stress

p = Friction coefficient
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As such, the interface does not have any fracture toughness, but dissipates energy through

frictional sliding. The maximum extent of slip at an interface was determined for two

different situations:

(1) P=.l
0.0 < a,/ao < 100.0
0.0 < d/a < 2.0

(2) a,/ao = -5.0
0.0001 < p <_ 100.0
0.0 < d/a < 2.0.

A portion of the results are provided in Figures Al and A2.
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Figure Al Slip length versus friction coefficient
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Figure A2 Slip length versus stress ratio

The general tendency for the slip length to increase as p decreases for case 1 and as c;/;.J

decreases for case 2 is to be expected. The apparent similarity in the shape and

magnitude of the curves in Figures Al and A2 suggest that slip length may remain

constant for a given Frictional Grab. Further investigation revealed that slip length did

in fact remain reasonably constant for specific values of Frictional Grab over definitive

bands of p and o;/O 0 . Results are listed in Table A-1.
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Table A-I Frictional Grab evaluation

p 0.001 0.01 0.10 1.00 2.00 3.00 4.00 10.0

FG

0.0001 x x

0.0010 x x x

0.0100 x x x x

0.1000 x x x x x x

1.0000 x x x x x x x

10.000 x x x x x x x X

x's denote the range of p for which the slip length was within five percent of the norm
for a given Frictional Grab. If you are interested in a Frictional Grab of 0.01, for
example, than you may use any combination of friction coefficients (between 0.001 and
1.0) and appropriate stresses which yield the desired FG. Table A-1 illustrates that for
the analysis at hand, the Frictional Grab parameter is sufficient to characterize interfacial
resistance.

Figures A3 - A7 show typical slip and stress distributions for different values of

Frictional Grab. For cohesive interfaces (large values of FG), stresses are easily

transferred across the interface; localizing displacements. "Slippery" interfaces result in

a greater distribution of stress fields brought about by slip which occurs along the

interface. As the crack approaches the interface, stress distributions for low FG values
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appear to shift with crack approach with only a small increase in magnitude. Stronger

interfaces exhibit increasing localization and growth of stresses as the crack propagates

toward the fiber. Again due to the sliding which occurs along weaker interfaces. Ideally,

designers would like to optimize the strength of an interface to transmit stresses at values

up to but just below fiber failure such that maximum energy dissipation occurs.
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Figure A3 Shear stress distribution, FG = 0.10
"y" is the height along the interface above the crack plane as shown in Figure 1.7
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Figure A4 Normal stress distribution, FG = 0.10
"y" is the height along the interface above the crack plane as shown in Figure 1.7
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Figure A5 Slip, FG = 0.10

"y" is the height along the interface above the crack plane as shown in Figure 1.7
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Figure A6 Shear stress distribution, FG =1.00
"y" is the height along the interface above the crack plane as shown in Figure 1.7
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Figure A7 Normal stress distribution, FG = 1.00
"y" is the height along the interface above the crack plane as shown in Figure 1.7
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APPENDIX B

STABILITY ANALYSIS OF DOUBLE CLEAVAGE

DRILLED COMPRESSION (DCDC) SPECIMENS

Stability requires that the crack advance at constant increments, da, when subjected

to incremental loads. If growth is unstable, failure would be catastrophic. Stability is

therefore critical in controlling the growth of the crack toward the fiber such that

interactions at the interface may be monitored. As discussed in section 1.3, crack growth

occurs if the stress intensity factor, K, at the crack tip is greater than K1, the fracture

toughness. This is analogous to saying, yield occurs if a is greater than the yield stress

of the material, ay. For brittle plane strain materials, K1c is assumed constant. Stability

requires that K decrease with increasing crack length such that for a crack in an infinite

medium, K will eventually fall below K,,, and growth will arrest (Figure BI). Further,

the applied stress intensity factor is related to the compliance of the body by

K2 EP_2 &, (1)
2B-
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Thus the stability requirement becomes that the s of the compliance versus crack

length curve must decrease with increasing crack length.

C

Cack Gmwth
Siable

C=k Anew

a

Figure B 1 Crack arrest in brittle materials

Any standard finite element package will calculate load versus displacement data

from which the compliance of the system can be determined. The Double Cleavage

Drilled Compression specimen was modelled using I-DEAST. Symmetry required that

only a quarter of the specimen be meshed (Figure B2).
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Figure B2 Double Cleavage Drilled Compression mesh

The mesh consisted of approximately 5000 8-noded brick elements. Zero shear on planes

of symmetry was enforced. The crack was modelled as a free surface which allowed

updating the crack length by simply changing a few degrees of freedom. The compliance

of the system was determine for five different crack lengths: the largest of which

extended through one-half the length of the specimen. It was assumed that the stress

singularity at the crack tip would not significantly influence the compliance of the system

at any given instant in time. This eliminated the need for special crack-tip elements. A

similar model was successfully used by Morrison [22].
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Figure B3 shows that, as would be expected, the material does become more

compliant with increased crack length. Further, Figure B4 shows that fracture in DCDC

specimens is indeed stable since the slope of the curve decreases with increasing crack

length.
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Figure B3 Compliance data

Fuller performed a similar stability analysis, in which he showed stable crack growth is

preceded by a short unstable growth, commonly referred to as pop-in. The term "pop-in"

is used since the sudden unstable crack extension is often accompanied by an audible

click. Experiments verify that pop-in does in fact occur during testing.
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APPENDIX C

BUCKLING ANALYSIS OF DOUBLE CLEAVAGE

DRILLED COMPRESSION (DCDC) SPECIMENS

Dimensions of the Double Cleavage Drilled Compression test templates were

calculated to ensure fracture occurred at the large center hole prior to buckling failure.

To eliminate edge affects and ensure the fiber length was large relative to the crack plane,

the width was kept large. The length of the specimen was chosen to satisfy Saint

Venant's principle for a significantly large crack length.

Determination of critical buckling loads support experimental findings of stable

fracture prior to buckling failure. Euler's buckling equation is developed by finding the

equilibrium position for which the first variation in potential energy of a buckling column

is stationary. For the case of a column with hinged ends, Euler's formula is given by

Equation (1). L/k is known as the slenderness ratio, and is a commonly grouped as a

single parameter in stability comparisons in columns [30].
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E2 E

(1(1)
k

where

A = cross-sectional area

L = specimen length

k = radius of gyration

E = Young's modulus

Modelling the template as two notched columns (Figure Cl) and using the

dimensions found in Figure 2.1 and material properties from Table 2-1, a worse-case

critical buckling load is found to be 4000 pounds. The DCDC specimens were loaded

to a maximum of 2000 pounds (limited by the loadcell) without buckling failure.

Figure C1 Buckling model
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Equation (2) is used to calculate the load at which fracture initiates at the hole [2]. Using

the same dimensions and material properties, the critical fracture load is found to be 1500

pounds.

E R A (2)

It was noted that once fracture occurred in the DCDC specimen, growth

occasionally arrested once the crack reached some critical length. Examining this

phenomenon from an energy point of viev , it appears that crack growth is arrested

because the energy available for the creation of new surface area is consumed by another

failure mechanism. As one example, the driving force behind the propagation of the

crack can be viewed as two columns which are joined at the top and bottom and tearing

apart as they buckle in opposite directions (Figure C2). As the crack length increases,

the critical buckling load of the ligaments decreases as a function of square of the crack

length. Letting the half crack length, a, be equal to one-half the length of the buckling

ligament, Euler's buckling equation becomes

2 72 E k 2 A (3)
PC, 2

Since fracture in linear-elastic brittle materials is assumed independent of crack length,

as the crack length and corresponding load continue to increase, eventually buckling

becomes the dominate failure mechanism. Note for specimens which were precisely

milled, buckling did not occur. The specimens failed due to excessive crack length.
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I t

Figure C2 Ligament buckling

The above analysis is presented as an example of energy trade-off. It is not

suggested that this is what is actually occurring during testing; there are other effects

which attribute to arrest of the crack growth. The crack may grow beyond the stress

concentrations provided by the center hole, or the crack may grow too close to the edges

where again the state of stress changes and where Saint Venant's principle is no longer

valid.
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A finite element analysis was accomplished to ensure eccentric loading did not

adversely affect the state of stress in the region of interest'. Comparison of a relatively

course model with a uniform load and a severe wedge load validated Saint Venant's

principle. Stresses in the region of interest were almost exact. Stress contours (ay) are

shown in Figure C3 for the two loading cases. The stress values within the lower

contours are the same. 10,000 PSI is the maximum stress applied to the specimen.

15,000 po
10,000 pd 5,ooopd

Figure C3 Stress comparisons for the DCDC templates with a uniform loading
and a severe wedge loading

"From larger center hole to approximately one-quarter inch above fiber.
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APPENDIX D

ESTIMATION OF FRICTIONAL GRAB PARAMETER

CHARACTERIZING FIBER-MATRIX INTERFACES

The assumption that the fiber - matrix interface may be characterized by only the

Frictional Grab parameter requires knowledge of the static coefficient of friction and

normal residual stress at the interface, as well as the driving stress at the main crack in

order to satisfy the equation:

F = a(1)
Go

The coefficient of friction, p, was determined experimentally using two small blocks and

finding the tangent of the inclined angle at which slip initiated when the two blocks were

resting on one another.

Pyrex fibers were introduced into a matrix of the same material by first drilling

a hole for the fiber. Pyrex rods where than heated and drawn down until they could be

slid through the fiber hole. The actual fiber used was than cut from the rod where the
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diameter was slightly larger than that which slid through the hole. To insert the fiber into

the matrix, the matrix was heated to approximately 700 TF at which time the room-

temperature fiber was forced into the hole and the system was allowed to cool. The

normal residual compressive stresses resulting from this process were estimated using the

elasticity solution for internally and externally pressurized cylinders (Figure D1).

P2"

Figure Dl Residual interface stresses

D-2



As the matrix cools around the fiber, the resulting displacements are given by

•I•' l+v
u= U E Pr (2)

Since the fiber was forced into the heated matrix, the fiber diameter is defined by

r- = r, + ra(&7) (3)

Substituting Equation (3) into (2), the resulting pressure (normal residual compressive

stress) is found to be defined by

£Ea(67) (4)
2+(1-v)a(67)

The epoxy was simply cured within the fiber hole to form the desired fibers. The

epoxy does not to shrink upon curing;* however, there is a greater amount of mechanical

interlocking since during curing the epoxy may flow into crevices created during drilling.

To approximate this apparent increase in toughness, a small compressive stress was

included in the computational analyses. A silicone release agent was added to weaken

the interface by reducing the amount of interlocking which occurred.

" Based on manufacturers advice that the epoxy should not shrink for the given fiber size. At most,
shrinkage may be 0.001 inches per inch.
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An accurate assessment of p and a. could be accomplished through push-out tests

[16,171; however, the epoxy fibers proved to be too ductile. The greater the axial force

applied to the fiber, the greater the resistance from the Poisson expansion. The length of

fiber was reduced until the fiber was successfully pushed-out; however, dominate edge

removed any value from the data.

The computational analyses assume that fracture is driven by an internal pressure;

whereas, the experiments were loaded at the far boundaries. The internal pressure is

estimated by determining the stress required to obtain an equivalent bending moment for

the specimen geometry (Figure D2).

P

d

A P'/2 ae

6

Figure D2 Determination of equivalent bending moments as an
estimate for the internal driving pressure to be used in the

computational analyses
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The equivalent driving stress is found to be

, s (5)

Table D-1 lists the results of this analysis.

Table D-1 Estimation of interfacial strength for model composite systems

p ;. / a. Frictional Grab

Pyrex 0.23 13.0 3.0

Pyrex / oil 5.0 0.9

Epoxy 0.43 1.0 0.4

Epoxy / Silicone 0.59 0.3 0.2
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APPENDIX E

DIGITIZED IMAGES OF CRACK FRONT

Computerized images were obtained from VHS tape as outlined in section 2.2.1.

The following pages are digitally enhanced images taken from the original media.

Several different cameras, lighting fixtures, magnifications, and specimens (size and

quality) were used throughout this analysis. Therefore the figures which follow may

appear inconsistent; however, they all attempt to show either the crack periphery or

development of slip zones.
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Figure: El

Fiber: none

Comments:

Figure E l illustrates the general shape of the crack front during fracture, as well

as the procedures for measuring the half-crack length. The dark area at the bottom of the

specimen is the top half of the main hole where the crack initiates. The arrow denotes

the current position of the crack periphery.

Figure El Fractured DCDC template illustrating crack-periphery shape
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Figure: E2 through E5

Fiber: none

Comments:

1. The roughness just above what appears to be the fiber on Figure E3 is actually

the back portion of the fiber. The camera was not looking down the fiber axis (as evident

in Figure E2) and when filtered from a three-dimensional view to a two-dimensional

view, the phantom obstruction resulted.

2. Figures E4 and E5 are two consecutive frames from the video tape. This is

evident by noting that the edges of the periphery are at the same location. This sequence

illustrates the dynamic jump which occurs as the fiber is sucked into the hole.

3. The jagged edge (far right) resulted when the template was cut from a large

plate of glass.
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Figure E2 Unfiltered image of crack periphery approaching hole

Figure E3 Embossed image of crack periphery approaching hole
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Figure E4 Embossed image of crack periphery snapping into the hole

Figure E5 Embossed image of crack periphery growing around the hole
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Figure: E6 and E7

Fiber: none

Comments:

1. By shining a bright light at a specific angle relative to the camera and crack

plane, color contours could be observed (Figure E6). If the stress is relieved, the contours

disperse (Figure E7). When the specimen is reloaded, these bands begin to form and

coalesce at the crack tip once again. These contours are visible to the naked eye during

(and after) testing.

2. The glare which is the same in the two figures is produced from the bright

light which was required to record the contours.
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Figure E6 Stress contours due to fracture when specimen is loaded
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Figure E7 Stress contours due to fracture when specimen is

unloaded
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Figure: E8

Fiber: hole

Comments:

1. During this test, a crack first initiated from the fiber hole. Eventually, a

second crack popped-in from the larger central hole. The interaction between the two

orthogonal cracks is interesting since in theory we assume that two perpendicular, mode

I, cracks are independent.

Figure E8 Interaction of mutually orthogonal cracks
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Figure: E9 through E 11

Fiber: hole, epoxy, and glass (respectively)

Comments:

1. The following three images are actual pictures of the crack periphery at

different times which have been captured off of the VHS tape. The images have been

digitally enhanced and superimposed to illustrated a time history of growth around the

inclusions.

2. The dark spots and line (upper right of fiber) are actually dust particles which

were on the camera lens.

3. The jagged appearance of the periphery resulted from the computer imaging.

In reality, the periphery does not have any sudden changes in slope.

A. Hole (Figure E9)

The crack dynamically snaps into the hole due to the influence of the free

surface. As the fracture continues around the hole, growth in retarded near the free

surface since the crack must not only advance but also follow the circumference of the

hole. The two crack halves continue around the hole and eventually snap together a fair

distance above the inclusion. Interestingly, the crack dynamically enters and exits the

inclusion.
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B. Epoxy (Figure El0)

The crack again snaps into the fiber, however, the distance from the

periphery to the fiber is much less than in the previous case. The two halves of the crack

continue around the fiber until the meet at the top, and the fracture continues with a slight

concave bow. Eventually, the crack front assumes its initial shape (flat) again.

C. Glass (Figure Ell)

For the case of a strong interface, the periphery remains relatively flat for

the entire growth sequence. This is attributed to the fact the crack-tip stresses are

transmitted across the interface with little dissipation. The two halves of the crack snap

together upon exiting fiber (as necessary for the periphery to remain flat).
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Figure E9 Experimentally determined crack propagation history around a hole
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Figure ElO Experimentally determined crack propagation history around an

epoxy inclusion
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Figure El11 Experimentally determined crack propagation history around a glass

inclusion
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Figure: E12 through E14

Fiber: Epoxy

Comments:

The following sequence of photographs illustrate the development of frictional slip

zones along an interface due to the presence of crack-tip stress fields. Figure E13 shows

the tendency for weaker interfaces to debond prior to the main crack reaching the

interface. Note that a matrix crack initiates well off the crack plane. This supports are

assumption that the maximum stresses are above the crack plane. Figure E14 illustrates

the amount of debonding and matrix cracks characterized by a bridging fiber.

Figure E12 Fiber (epoxy) - matrix interface prior to fracture
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Figure E13 Fiber - matrix interface just prior to arrival of the main crack

Figure E14 Interfacial damage representative of bridging fibers
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Figure: E15 and E16

Fiber: glass

Comments:

Strong interfaces are characterized by limited interfacial energy dissipation. As

predicted, only a small area of the interface slips during fracture. Further, frictional

sliding does not initiate until the fracture reaches the interface.

Figure E15 Fiber (glass) - matrix interface prior to fracture
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Figure E16 Interfacial slip for crack growth around first quarter of the fiber

The fracture is located near the bottom of the fiber where the dark and light

regions meet. Just to the right of this mark, the light area transitions into a gray zone.

The area between these two marks is the region of interfacial slip
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APPENDIX F

INDIRECT BOUNDARY ELEMENT TECHNIQUES

AS APPLIED TO LINEAR ELASTIC FRACTURE

MECHANICS

1. Introduction

This appendix outlines, in detail, indirect boundary element methods (BEM) and

their applicability to fracture mechanics problems as outlined by Crouch [9] and Larson

[ 19]. Standard finite element techniques are being replaced by boundary element methods

for specific classes of problems since BEM reduce the system of linear algebraic

equations which needs to be solved, since only surfaces, not volumes, need be discretized.

The numerical elasticity solution is determined through superposition of a finite

distribution of analytical singular solutions (to known influence or Green's functions [181)

which exactly satisfy the governing partial differential equations in 91, the region of

interest.
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Consider, as an example, the finite region, 9t, enclosed by a bounding curve, C

(Figure Fl (a)). The elasticity solutions to region 9t may be well approximated by

considering a similar region 91" (enclosed by C ) within an infinite region (Figure Fl (b)).

Since analytical solutions to the governing PDE exists for case (b), the solution is

obtained with less work. The trick, however, is to insure the results in case (b) truly

represents those posed by (a).

(a) (b)

Figure F1 Regions of interest considered in boundary element formulations

Assume the above region, 9W', is a centrally-located, pressurized crack. The stresses

within the body may be determined by dividing the crack periphery, C*, into a finite

number of discrete elements, N. The elastic response due to any element, i, is defined
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by a fundamental singular solution which not only becomes the kernel (singular integrand)

of our governing integral equation but also has the physical characteristics of representing

the crack opening displacement (or strength of the singularity), 6. The objective than is

to determine a linear combination of singularity strengths (6, (i = 1..N)) which satisfy

the prescribed boundary condition (opening pressure applied to the crack) at discrete

(collocation) points along the crack surface. Theoretically, if a closed form solution to

the governing integral equation could be determined in considering C', the solution would

be exact; however, inaccuracies are created from numerical discretization and integration

procedures. The error tends toward zero as N approaches infinity. Once all the 6i's are

known, the solution for any point within 9V (or equivalently 9t) may be determined.

Since solutions are not constructed at discrete nodal coordinates, as in standard finite

element techniques, the solution has the potential of being more accurate since

interpolation is not required.

2. Fundamental Solution

Stress and displacements induced by a crack in an infinite medium are derived by

integrating the effects of dislocation densities [9] along the fracture surface which are

defined by Kelvin's plane strain solution for a point force in an infinite medium. The

displacement discontinuities are the difference between the displacement on the upper

(positive side of the crack, y = 0.) and lower (negative side y = 0.) as defined in Equation

(11). (Section 3 discusses dislocation densities and force dipoles in detail). These
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dislocation densities, or force dipoles, are constructed in the limit as two opposing point

forces converge (Figure 3.1). The dipole represents a point of infinite strain, or

equivalently, a finite displacement between two infinitesimal surfaces. A continuous

distribution of such dipoles is used to model the crack.

Therefore in order to better understand the theory behind BEM, we must first

investigate Kelvin's solution for a point force in an infinite medium. Figure F2 illustrates

such a force, Fi, whose dimensions are force per unit length, and projections onto the

coordinate axis are F, and Fy respectively.

Y

F1

F3

Figure F2 Point force in an infinite medium
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Kelvin determined that the solution to the stresses and displacements are characterized by

the function g(x,y) and its derivatives where

g(x•y) -1 - In( y (1)

4%(1 -v)

Reference Crouch [32f] for the development of Equation (1). The derivatives to Equation

(1) are directly evaluated as shown below.

-1 x
g" 4%(1-v) X2 +y 2

-1 .y
4z(l-v) x 2 +y 2  

(2)
+1 2xy

n (1" -v)(X2+y2)2

9,= -9, +1 x2 -Y21 x2-y2

= - 42(1-v) (x2+y2 2

where g,1 indicates partial differentiation with respect to x. Kelvin determined that the

displacements within the body are defined by

F F
us = -F-- [(3-4v)g-xgj]+-f[-yg]

U 2G 2G (3)

F F
uy -- •[(3 -4v)g -ygy]+ -•-xgb,]

where G is the shear modulus. Linear strain and stresses are determined subsequently

using Equation (4)
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e. = !(u.,9+sU)

au = 2 G[ev+ _- e.80

Substituting Equation (3) into Equation (4), the stresses are found to be:

.a [~2(1 -v)g,-xg,.,J +F42vgY-ygj
oY = F,[2vg,,-xg,,,]+F[2(l-v)gY,-ygg] (5)

GY= F,[(1 -2v)gy,-xg,,] +Fy[(1 -2v)g,.-yg,•,]

The next step in determining the fundamental solution to the pressurized crack

problem is to examine a continuous distribution of point forces along the fracture surface.

Figure F3 illustrates the related problem of a constant stress, or traction, over a discrete

line boundary which is representative of one side of our two dimensional pressurized

crack. Since the solution for each individual point force is characterized by g(xy), the

total result of the line intensity is obtained through a straight forward integration of the

original solution as expressed in Equation (6).

fxy) =f "g(x- 4,ad
- -1 [y(arctan-. -arctan___) (6)

4%(1-v) x-a x+a

-(x-a)In/[(x-a2+y2 ]
+(x +a)ln l[(x+a)2 +y2]
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Y

x

a1 a

Figure F3 Line intensity representing one half of a two dimensional
pressurized crack of length 2a

Using the same procedure as before, Kelvin obtained the following displacement and

stress solution to the problem shown in Figure F3.

P P
ux =-[(3 -4v)fJf*•,]+ -- [ -ffj

=2G[( f,2G[ ]

U= Lx -3f, +* 2 [3-4v)f-3f,] (7)

am = P,[(3-2v)',,y÷•f,3 +P,[2vfy,-+yf

GO, = P,[(2v -IY4-AfI+P[2(l- V Y,-ff,)I

where P, is defined by FI(4) = Pi dt and the derivatives of function f(x,y) are defined by

Equation (8). dt is the infinitesimal area over which a single point force acts.
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+1 [lnj[-(Ta-a+y 2j -ln/(x4.a)2+y 2]

1[arctan-ý -arctan Yi
=~ TN -(1-V) x-a x+a (8)

+1 y[ - y
fl 4X(1-v) (X-a)2 +y2 (X+a)2+y2

fl -YY= 1 x - _I-

47C(1-v) (X-a)2+yl (X+a)2+y2

Note that each discrete element is referenced in a local fr-ame of reference as illustrated

in Figure K4 and therefore must be transformed globally in order to develop the proper

set of linear equations. The resulting global displacements and stresses are given by

Equations (9) and (10).

i = ... 4(3 -4v)cosPT1 .5snoI3+
2GTsipFCOP3

+ ..24(4v -3)sinI3F 1 -T~cosIF 2 -sinI3F 3)]
2G

uY=-4(3-4v)sinpF1 +j'(cosI3F2 -sinpF3]
=2G

..-.... (3 -4v)cosJ3F 1 -y(sinI3F 2+COSP'F 3)] (9)

CxT= PýIF 2 +2(1 -v)(cos(2Jp)F2 -sin(2p),F) +5Tcos(2 3),F4 +sin(2J3),F,)]
.PY4F 3 -(1 -2v)(sin(20 )F2 +cos(2p3)F) +T~sin(2p3)F 4 -cos(2p3)F,]

a, = PJAF2-2(1 -v)(cos(2p3)F 2 -sin(203),F) -Ticos(213 )F4 +sin(21 )F5)]

+Pý4F 3 +( 1-2v)(sin(213)F 2 .cos(2 j3)F 3) -j~sin(2J3)F 4 -cos(213)F 5]

;,y= P42(1 -v)(sin(203)F 2 +cos(203),F3) +iV(sin(203)F 4 -cos(2P3)F 5 )]

+P4(1 -2v)(cos(2 ),F2 -sin(2p3)JF3) -TRcos(23),F4 +sin(213 )F5]
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-1 arta -arctan Y
F1 (5)~ 4(--V) x-a x+a)

F 2 R5;) = f= +1 [In R[--a)2 +Tj -lnj[-i+a)2 +y-h I
4z (I -v)

F'i ~ -f, -1 yT
Ay = 4TZ(a-V) ~x--a x+a

II f-1 y (10)
F4 (Ti) ;. = 4Tr(1-v) (i-~a) 2+5T2 (iýý+a) 2+)7

F5F') iF = +1 I x -a _ Fa

_______) (i-~a)2-y 2
- (i+a)2-j 2

F =f ~+1 (i-_a)2 -y (.f+a)2-7
F7(j5)= 4X~(1 -v) ((i-~a)2 +572)2 ((ij+a) 2+T7 ý2

Y f(F-) (Za

:R - (z -c,) ow + (y - Cy)uidn

fr - -(z- C.) gin + (y -C,)

cx x

Figure R4 Coordinate transformations
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The final step in the formulation of the elasticity solution is to consider the

displacement discontinuity, D,, between the positive side of the crack, denoted y = 0÷, and

the negative side, denoted y = Q. D, is, therefore defined by

D, = Uxs(xpO-U,(xxO.) (ll)

Note that the resulting solution is equivalent to that obtained by Larson in representing

the fractured surface as a continuous distribution of force dipoles (D, = K&)*. The global

displacement and stresses written in the local frame of reference for any element, i, can

now be written as shown in Equation (12).

u, = B[(2v -l)sinP3F 2 +2(1 -v)cosjff +j'(sinjPF,-cosPTF5 )]

+8[(2v -1)cosP3f 2-2(1 -v)sinpF 3 -ý'(cosI3F 4+sinpIF)i

u1 = -{2v-1)cospF 2+2(1 -v)sin-F 3 -y(cos PF4 +sinF ,)]
'-64(2v -l)sinp3F 2+2( 1 -v)cosP3F 3 -j'sinPF4-cosI3F)]

a - 2G8A2cs2 3F4 +sin(23)F,5 +'(°cos(23),F,-sin(23 )F7 )] (12)

+2G64 -F5 +"(sin(23)F 6 +cos(2f)F 7)]

ayy = 2G8 2sin213F4 -sin(2 ),F5- -(cos(2),)F6 -sin(21)F 7)]
+2GS4-Fs-'(sin(2 )F6+cos(23)F 7)I

a,, = 2G86 sin(2P)/F4 -cos(213)F 5 +y(sin(213),F6 +cos(21 )F7)]

+2GB6 -"(cos(2P3)F 6-sin(2P3)FT7)

"Indirect boundary element methods integrate Kelvin's point force solution on both sides of the crack surface
(y = 0. and y = 0 ) and determine dislocation densities via a limiting process. Surface integral techniques
incorporate force dipoles which are created via the same limiting process of two Kelvin point forces. The
solution is obtained with a single integration of the new fundamental solution. The results are the same,
only the mathematical procedure in interchanged. Section 2.1 details the differences between the two
methods, as well as the solution for the constant K.
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For simplicity, express the stress components in Equation (12) as

oq(xj) = I(ji)a(xp) (13)

Recalling that oi; is our prescribed boundary conditions, the total crack opening

displacement at any point is found by summing the effects of a continuous distribution

of dislocation densities (force dipoles) over the crack domain.

SX ) = fai i)a,(x,)dA (14)

If Equation (14) could be directly integrated over the crack surface, the exact solution to

the problem would be obtained. Since this is impractical, the crack domain is divided

into N discrete elements where the boundary conditions are exactly satisfied at a single

collocation point. This results in a discontinuity in displacement across each element

creating a stair-step approximation for a continuous crack opening displacement. This

numerical technique well approximates the analytical solution provided small enough

elements are incorporated. Since 6, is assumed constant across each element*, the final

solution is determined by the following set of linear equations.

N

S°x E ,afr(F)cL4 (15)
1-0

"Reference chapter three (page 3-10) for exceptions.
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Note that F(F) is completely defined by the material properties and geometric boundary

conditions. Given these parameters, Equation (15) can be written as

a = [C] (16)

where C is known as the matrix of influence coefficients satisfying Equation (12).

The problem of interest to this study is a pressurized crack near an interface. The

initial prescribed boundary conditions are the applied tractions along the crack surface and

the initial displacements along the interface which are assumed to be zero. Partitioning

of the influence coefficient matrix allows direct determination of unknown crack

displacements according to Equation (17). Once the unknown crack displacements have

been determined, the stresses are updated using the following conditions:

(1) If the interfacial shear stress is less than the normal stress times the friction
coefficient, the stress at the interface is set equal to the value of the shear stress and the
interface does not displace.

(2) If the shear stress is greater than the product of the normal stress and friction
coefficient, then the shear stress is set equal to the value of the normal stress times the
friction coefficient and the interface slips.

(3) If the normal tractions are greater than the initial compressive stress, the interface is
allowed to open and the shear stress is set equal to zero.
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o U C. . . . . . . . . . . Cl ?
O Y . . . . . . . . . . ?

02x . . . . . . . . . . ?

0. ............. . (17)

- . . . . . . . . . 0
? . . . . . . . .. . . 0

? .... ... .......... C 0

Given these stresses, displacements are updated through application of Equation (17) once

again. Once the displacements are known, new stresses are calculated, and the procedure

is repeated until equilibrium is reached. The final solution is determined through n

iterations; applying tractions of p/n along the crack plane at each increment.

Once the crack opening displacements for each collocation point are known, stress

intensity values along the crack periphery may be calculated. Recalling that the periphery

is assumed to open as a parabola, 8(r) is determined using standard curve fitting routines

(Figure F5). Given S(r), K,, Kn, and Km are estimated using Equation (18).
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8,- KA,(vEp 2

i = I, II, III

A, = A,, = 4(1-v 2) (18)

AN = 8(1+v)

where p is the perpendicular distance from the crack periphery.

6__(r)

cck dp,

Cofloadon -ont

Figure F5 Opening displacement for crack-tip element
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2.1 The Dipole Concept

The discussion which follows examines the utility of representing fractures as a

continuous distribution of force dipoles as presented by Keat [33f]. Representation of a

nucleus of strain by a pair of opposing concentrated forces is not new and may be traced

back to Love [21]. What is new, is its application to fracture behavior.

Consider a pair of parallel but opposing point forces, equal in magnitude and

separated by a distance, 8. In general, the forces need not be collinear. The

displacements and stresses created by the force system may be determined presupposing

that the solution to a single point force is known. (Kelvins solution, Equation (1)).

Consider, as an example, that the variations in g induced by a single force, F, are defined

by

g = F, g' (19)

where g' is a scaler function representing the force's position and the material properties.

The magnitude of g due to the dipole shown in Figure F6 is determined through

superposition of the two solutions, while noting that the solutions due to both forces may

differ by a small amount dge. The resulting equation is

g =Fg' - FI(g'+dg) = -Fdg' (20)
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F 2 2

n

Figure F6 General dipole configuration

Performing a Taylor series expansion of dg', Equation (20) becomes

g = =F, (8 n, g 1'+282 n g (21)

where n is a unit vector directed along the line connecting the two point forces.

The variation in g due to the force dipole is found via a limiting process of

allowing 8 to approach zero, while keeping the products 8 F, constant. This necessitates

F1 -+o-; resulting in an infinite strain between the two point forces defined by Equation

(22).
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9= -6 F, nj gI,, (22)

It is convenient to resolve F into components which are collinear and orthogonal to the

unit vector, n. The collinear pair of forces creates what is known as a tensile dipole

while the resultant of the orthogonal forces is known as a shear dipole. The displacement

field emanating from the two dipoles is shown schematically in Figure Fl. The reader

will note the similarity to dipoles (or doublets) used in irrotational fluid flow and

magnetic field theory.

(a) Tendsle dipole (b) Shear dipole

Figure F7 Typical scaler fields produced by tensile and shear dipoles
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Note that an arbitrarily oriented dipole in three dimensional space (Figure F6) yields a

single tensile dipole perpendicular to the s-t plane, and two shear dipoles describing

rotations in the n-s and n-t planes respectively. Equation (23) represents the strength of

the different dipoles.

g = -8 P, n, nj g1 ,1 tensile

g = -8 P2 s nj g', shear (23)

g = -8 P3 t, nj g I I shear

where Pi is the magnitude of each force, anrd Pi is the dipole intensity. Each dipole

models one of the crack displacement modes described in chapter one on page 1-13.

To model the mode I pressurized crack problem considered throughout this paper,

the tensile dipole is supplemented with a pair of laterally acting tensile dipoles scaled to

eliminate any Poisson contractions which may occur. Superposition of these three results

in an equation of the form

g = -6P1[ni n1 g Ij + (.. _.) (s0 si g 'j + ti tj g i )] (24)

Shear components are modelled by pairs of self-equilibrating shear dipoles as shown in

Figure F8 (a). Corresponding displacements used in the displacement discontinuity

techniques are shown in Figure F8 (b). The resulting stresses and strains are completely

defined by 6, Pi, and Di. Substitution of these parameters into Hooke's law results in the

following relationship between the dipole strengths, &,, and the displacement
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81 E(1-v) D
(1 +v)(1 -2v) (25)

82 = GD2
83 GD3

(a) lIm d1po me"

P

(I) Th diqhcmt dlmuooiniy nuodd

Figure F8 Dipole systems and equivalent displacement discontinuities

Solutions using the dipole method are found through a single integration of the

"new" fundamental solution corresponding to the force dipole (as opposed to Kelvin's

solution to a point force). Displacement discontinuity techniques integrate the original

fundamental solution over both crack surfaces, and than incorporate superposition. The

two methods are equivalent, only the mathematical order is interchanged.
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3. Numerical Procedure

Equation 12 (repeated below) describes the state of stress at any point within an

infinite medium due to a single element with a continuous distribution of force dipoles.

u,ý,= -[(2v -1)sinF,.+2(1 -v)cosp 3+i-(sin/, -cosIF)]
+f(2v -1)cos3F 2 -2(1 -v)sin3F 3 -i-(cosF 4.+sinj3F)j

uy = 8([-(2v-1)cos3F 2 +2(1-v)sinpF3 -j'(cos•F 4 +sinf•F 5 )]

+BY4(2v -1)sinP _2F+2(1 -v)cosP•3 3 -i(sinIPF4 -cosPT,_)1

Y. = 2G5j2cosePF 4 +sin(20 )F5 +5'(cos(2I)F 6-sin(2J3)F 7)] (12)
+2G84 -F, +;(sin(2 )F6 •cos(23 )F7)]

a = 2G5[2sin2hIF 4-sin(2J3)FT, -y(cos(23),F6 -sin(21)F 7 )]

+2G8 4 -i.-y(sin(23)F 6 -+cos(20I)F 7)]

a=- 2GB,-sin(213),F4 --cos(2 3)Fs +5'(sin(23),F6 +cos(203),F7)]

+2G8 4-"(cos(2P )F6 -sin(213 )F7)J

If the solution is summed across all the elements defining the crack domain, the

equilibrium state at that point is fully defined. Let the domain be defined by N discrete

elements; each element comprising a single collocation point at the midpoint of the

element and a local frame of reference

s =xi n

where x (bar) and y (bar) are defined according to Figure F4. Examining the

displacement and stresses fields created by one element, i, upon another element, j,

Equation (12) can be written as
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u'= B.'+ B.

A= 5~(1 -2v)siiryF 2+2(1 -v)cosyF 3

- 5isinyfcosyF)]
+8j[-(1 -2v)cosyF2 +2(1 -v)sinyF

- j(cosyF4-sinyF)]
Ufl = BZ' 8j + Bj8

= 8js[(1 -2v)cosyF 2-2(1 -v)sinryF 3

- yRcosyF4 -sinyl5)]
+ Sj,[(1 -2v)sinryF+2(1 -2vcsF 3 (6

+ yF(sin'yF4+cosyF5)]

= 2G8j[2sin~yF 4 +sin(2y)F5,
-Ticos(2y)F 6+sin(2y )F7)]
+2G6,t[ -,F, +Tisin(2y)F6 -cos(2y)F 7)]

= 2G&s[ -sin(2y),F4 -cos(27),F,

-j~sin (2t).F6 -cos(2j)'FA)
+2G&j( -5~cos(2y),F6+sin(2y),F7)I

where y is the relative angle between the two elements defined by I3 3.The total

solution for any point within the region of interest is calculated by summing the influence

of all N elements along the crack domain (Equation (27)).
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N N

us E (S)+E (B,'&8j) i=l..NV
j.1 j.1
N N

u4w = • (B•8)+•' (B•8',. i1l..N

j-I j-i (27)
N N

= • (A.8 )+J (A,. ) i=...N
j-1 j.1
N N

a = (A 8•+ E (A•,• i=I..]V

j-1 j-1

where the A's and B's are known as the influence coefficients. As an example, AM.

represents the shear stress generated at the "i"th element based upon a unit shear

displacement at the "j"th element.

The system of equations generated by N discrete elements consists of 4N equations

in 4N variables as defined by Equation (27). Prescribed boundary conditions reduce the

system of equations to 2N algebraic equations in 2N unknown displacement

discontinuities (or strength of the singularities). Unfortunately, the BEM model creates

a fully populated 2N by 2N matrix which is generally solved by Gaussian elimination.

A similar FEM model would consist of many more degrees of freedom; however, the

solution matrix is banded and can be solved using more efficient algorithms (eg.

wavefront method) [6]. Once the singularity strengths (crack opening displacements) are

known, the stresses for any point in space may be determined by placing the proper

spacial coordinates into the matrix of influence coefficient defined by Equation (16).
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3.1 Symmetry Considerations

Since structural nodes are not used in boundary element solutions as in standard

finite element techniques (only geometric nodes are incorporated), a line of symmetry

cannot be imposed by simply constraining (or freeing) specific degrees of freedom along

an edge of the mesh. Instead a line of symmetry acts as a "mirror;" reflecting the stress

components to a point which is not only co-planar with its corresponding point but also

placed symmetrically with respect to the same point as viewed from an observer along

the line of symmetry. The conditions which are enforced ensure that no normal

displacements occur across the line, and that no shear stresses act along it. These two

physical constraints are maintained by reflecting shear components which are equal in

magnitude but opposite in sign. The normal reflections are always equal (magnitude and

direction).
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